

Abstract— A hardware hash sorter for the Fermilab BTeV

Level 1 trigger system will be presented. The hash sorter
examines track-segment data before the data are sent to a system
comprised of 2500 Level 1 processors, and rearranges the data
into bins based on the slope of track segments. We have found
that by using the rearranged data, processing time is significantly
reduced allowing the total number of processors required for the
Level 1 trigger system to be reduced. The hash sorter can be
implemented in an FPGA that is already included as part of the
design of the trigger system. Hash sorting has potential
applications in a broad area in trigger and DAQ systems. It is a
simple O(n) process and is suitable for FPGA implementation.
Several implementation strategies will also be discussed in this
document.

Index Terms—BTeV, Trigger, Hash Sorter, Firmware.

I. INTRODUCTION
TeV is a B-physics experiment that has been proposed [1]
to run in the Tevatron at Fermilab.

The core of the BTeV detector is a 30 station Si-pixel inner
tracker immersed in a 1.6 Tesla dipole field. There are over
20x106 active rectangular pixels each measuring 50µ x 400µ.
Each pixel station has two planes, one with narrow pixel
dimension oriented in the x-direction, called “non-bend view”,
and the other with narrow dimension in the y-direction called
“bend view”. The coordinate data of particle hits measured by
the pixel detector are sent to the Level 1 vertex trigger system.

The primary task of the Level 1 vertex trigger system [2-4]
is to select events of interest for B-physics analyses by
reconstructing charged tracks and primary interaction vertices
and finding tracks detached from the primary vertices.

The track and vertex reconstruction is done in two phases.
The first phase is executed in the segment processor. Hits on
three adjacent silicon stations are linked together to form track
segments, called “triplets”. The segment processor forms two
types of triplets, “internal” and “external”, corresponding to
the beginning and the end of a track in the pixel detector.

In the second phase, the triplet information is passed to the
track and vertex processor, which consists of a farm of
embedded processors. The farm matches “internal” with

J. Wu, M. Wang and E. Gottschalk, G. Cancelo and V. Pavlicek are with
Fermi National Accelerator Laboratory, Batavia, IL 60510 USA (phone: 630-
840-8911; fax: 630-840-2950; e-mail: jywu168@ fnal.gov).

“external” triplets to form complete tracks. The track
parameters are used to find primary vertices for tracks that
appear to come from a common point in the beam region. The
trigger decision is based on the presence of tracks that appear
to be “detached” from a primary vertex, since this is a
characteristic feature of B particles.

II. PRINCIPLE AND IMPLEMENTATION

A. Hash Sorting for O(n2) Algorithm Acceleration
Matching internal to external triplets is a time-consuming

process. Each external triplet is checked against the entire list
of internal triplets for possible matches. The process is an
O(n2) algorithm. In the BTeV level 1 trigger baseline design,
this process is done in C-code and takes significant portion of
processing time.

A necessary condition for an internal triplet to match an
external triplet is that their slopes in the non-bend view must
be approximately equal. One possible solution is to sort the
triplets into several bins based on their slopes. With sorted
data, each external triplet will only need to be matched to
internal triplets in one or two bins, rather than all. Therefore
each external triplet will need only to be checked against a
much smaller list resulting in a significant reduction of the
processing time.

The sorting can be done in an FPGA before the data is sent
to the embedded processor. We will discuss this aspect next.

B. Firmware Implementation
A test design has been implemented on the current pre-

prototype version of the Level-1 Track and Vertex hardware.
This hardware that forms the basic unit of the track and vertex
farm consists of four TI 671x Digital Signal Processors
(DSP's), three FPGA's and two microcontrollers. Triplet data
from the segment processor is received by this hardware after
going through an event-building switch. One of the FPGA's
on this hardware, called Buffer Manager (BM), sends all the
triplet data for one crossing to one of the four DSP's.

The hash sorting function is performed parasitically in the
BM. One block named “DxBin” and four blocks named
“HashBlk” (one for each DSP) are added into the BM FPGA.

The DxBin block simply calculates triplet parameters used
for hash sorting. When the triplet data are filling the DATA
RAM buffer for each DSP, the data lines “D” and address

Hash Sorter - Firmware Implementation and an
Application for the Fermilab BTeV Level 1

Trigger System
J. Wu, M. Wang, E. Gottschalk, G. Cancelo and V. Pavlicek

B

lines “A” are monitored by the DxBin block. The hash bin
number “NBin” is calculated based on the non-bend view
slope of the triplet. The triplet ID, or serial number of the
current triplet, “T3id”, is also calculated, which is simply the
higher bits of the DATA RAM address “A”.

The hash sort block, HashBlk and the DATA RAM buffer
are shown in Fig. 1. The core part of the HashBlk block
consists of two memory areas, “PointerRAM” (Qa) and
“IndexRAM” (Qb). The “PointerRAM” stores the pointers of
triplets. The “IndexRAM” has three bit fields: “Qb.bgn”,
“Qb.cnt” and “Qb.endd”, which represent the beginning
location, the count and the end location of a hash bin. While
the triplet data are filling the DATA RAM buffer, the hash bin
number NBin and the triplet ID T3id associated with the
triplet are used to fill the “PointerRAM” and the “IndexRAM”
simultaneously. The following actions are performed in the
process:

1. The contents of the IndexRAM at the location
associated with the hash bin number NBin are read.

2. If the current triplet is not the first to be filled into the
current hash bin, i.e., if the count of the bin “Qb.cnt”
is not 0, the PointerRAM location, indexed by the
“Qb.endd” will store the triplet ID, T3id.

3. If the triplet is the first one in the current bin, the ID
of the triplet T3id is written into both the “Qb.bgn”
and “Qb.endd” field. Otherwise, “Qb.bgn” will be
kept unchanged and only “Qb.endd” will be update
with T3id. In either case, “Qb.cnt” will be
incremented by 1.

The actions above use only 3 clock cycles, given the
available time of 4 clock cycles for filling the 4 32-bit data
words of each triplet. After these actions, single directional
link lists of hash bins are formed in the PointerRAM available
for the later stages to use--data are logically hash sorted.

In the next step, data will be downloaded into the DSP via a
direct memory access (DMA) process. The data are further
physically sorted during the download.

An index table is first dumped into the DSP. The index
table will provide the beginning location and the count of the
triplets in the sorted data block for each hash bin so that the

Level 1 trigger software can access the sorted data efficiently.
The table is very ease to produce in fly during DMA.

After downloading the index table, the triplet data are sent
out via DMA. The order of presenting the triplet data to the
output port is controlled by the link lists stored in the
PointerRAM. After DMA, the data stored in the DSP memory
become physically hash sorted. The entire download process,
including downloading both index table and triplet data block,
is completed in a single DMA process. After the DSP started
the DMA, no further software intervention is needed.

It should also be pointed out that the PointerRAM and
IndexRAM are actually implemented in different area of one
physical dual-port RAM block. The process functions of the
hash sorting have been so adjusted that this kind of
implementation option can be realized. In modern FPGA
devices, dual-port RAM blocks are commonly available while
the number of blocks per device is still limited. So it is a
useful design practice to combine the memories into a single
memory block.

III. SILICON RESOURCE USAGE
The hash sorter described above was compiled in our

current “Buffer Manager” FPGA device (Xilinx [5]
xc2v1000). The following table shows the silicon resource
usage reported by the compiler:
Resource Total

available
Used in
DxBin

Used in
HashBlk

Slices 5120 52 (1%) 72 (1%)
Slice Flip Flops 10240 73 (1%) 51 (1%)
4-input LUT’s 10240 35 (1%) 75 (1%)
Block RAM’s 40 0 1 (2%)

The entire hash sorter uses 1 DxBin block and 4 HashBlk
blocks. Then the total logic cell usage is about 7% and the
memory block usage is about 10% in the device.

IV. TIMING RESULT
Computation times (in CUP clock cycles) of the Level 1

vertex trigger algorithm for the BTeV baseline design are
measured to study the acceleration effects with hash sorting.
Simulated events with 2 to 11 interactions per beam crossing
are fed to the trigger algorithm. Each of the measurement
points shown in Fig. 2 were obtained by averaging the total
execution time of the trigger algorithm on roughly 2500
simulated beam crossings.

Two sets of measurements are made. The first set uses
unsorted triplet data and the second uses hash sorted triplet
data. One can see that the segment matching process has been
improved by a factor of 4 to 4.5 by using hash sorted triplet
data. For comparison, we also plotted the total trigger process
times (that includes segment matching, track processing and
vertex finding). One can see that the segment matching
process takes a large portion of the entire process.

Σ

Qb.bgn

Qb.cnt

Qb.endd

T3id

A

D

NBin

Qa .idx

DATA RAM

PointerRAM

Index RAM

Index Table

Sorted Data

Fig. 1. The hash sorting block (HashBlk) and the DATA RAM buffer are
shown. The index table and sorted data represent results after DMA.

The timing measurement was performed using a 1.13 GHz
Pentium III-M processor. Although the fast processors that
we will choose in the future will supersede the absolute CPU
time, the relative CPU clock cycles should exhibit a similar
trend of acceleration with hash sorting.

V. DISCUSSION
In computing algorithm, “hashing” is a process to convert a

key K of a data item into a number:
MmKhm <≤= 0),(

where h(K) is called hash function and M is the total number
of storage locations. The data item is then stored in the
location indexed by m for future use. The hash function can
be in any form, although remainder modulo a prime number M
is chosen in many textbooks [6-7].

The process described early in this paper can be viewed as a
special case of hashing process. The hash function we choose
is binning just as the one when we book histogram. When the
variable or key K and bin size are properly chosen, the
function is simply shifting and masking out of lower bits.

The process can also be viewed as a special case of “radix
sorting/searching” or “bucket sorting/searching”. In some
aspect, it can be visualized as an extension of histogram
booking too. We choose the term “hash sorting” to emphasize
the fact that each storing or recovering of a data item is a
single memory access.

Regular sorting is an algorithm of at least)log(nnO ,

while hash sorting is)(nO , with unsorted items within a bin.
In many applications, the absolute order between two close up
items cannot be well defined due to measurement errors on the
variable or key K that sorting algorithm is based on. In this
case, the result of hash sorting is not any worse than the
regular sorting. However, the simplicity of hash sorting
clearly becomes favorable comparing with the complexity of
regular sorting.

Hash sorting can be implemented either in software or
hardware. In hardware implementation, the only necessary
function is to fill the “IndexRAM” and the “PointerRAM”.
The data items are already logically hash sorted once the

single directional link lists are established in these memory
locations. The physical order of the data items is further
rearranged during the DMA in our example. In other
applications, it may not be absolutely necessary. The
rearrangement is just to provide some convenience for the
software in the later stages. In fact, the rearrangement does not
cost extra process time.

REFERENCES
[1] BTeV Collaboration (May 2000). BTeV Proposal [Online]. Available:

http://www-btev.fnal.gov/public/hep/general/proposal
[2] E. E. Gottschalk, “Detached Vertex Trigger,” Nucl. Inst. Meth, vol. A

473, p. 167, 2001.
[3] E. E. Gottschalk, “BTeV DAQ and Trigger System – Some Throughput

Usability and Fault Tolerance Aspects,” in Proc. CHEP 2001, Beijing,
2001, p. 628.

[4] M. H. L. S. Wang, “BTeV Level 1 Vertex Trigger,” Nucl. Inst. Meth,
vol. A 501, p. 214, 2003.

[5] Xilinx FPGA Data Sheets [Web Site]. Available:
http://www.xilinx.com/xlnx/xweb/xil_publications_index.jsp

[6] D. E. Knuth, The Art of Computer Programming, 2nd ed., vol. 3.
Addison-Wesley, 1997.

[7] R. Sedgewick, Algorithms, 2nd ed., Addison-Wesley, 1988.

0

500000

1000000

1500000

2000000

0 2 4 6 8 10 12
Number of Interaction/Beam Crossing

of

 C
U

P
C

lo
ck

 C
yc

le
s

seg_match
seg_match_hash
total

Fig. 2. Numbers of clock cycles needed to process triplet data in a beam
crossing are plotted. The triangle points are total clock cycles to process
unsorted data. The diamond and square points are ones of segment matching
with unsorted or hash sorted data.

